Chapter 12

Vector valued functions and motions in space

12.1 Curves and Tangents

Definition 12.1.1. A curve(or path) can be represented as a function \mathbf{r} : $I=[a, b] \rightarrow \mathbb{R}^{n}, n=2,3$, called a parameterized curve.

A parameterized curve \mathbf{r} in \mathbb{R}^{n} can be also written as

$$
\begin{equation*}
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k} \tag{12.1}
\end{equation*}
$$

$f(t), g(t), h(t)$ are called component functions.

We define the limit of a vector function as

$$
\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\mathbf{L}=\left(\lim _{t \rightarrow t_{0}} f(t), \lim _{t \rightarrow t_{0}} g(t), \lim _{t \rightarrow t_{0}} h(t)\right) .
$$

Definition 12.1.2. It is called differentiable at t, if the limit

$$
\begin{equation*}
\mathbf{r}^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{r}(t+\Delta t)-\mathbf{r}(t)}{\Delta t}=\left(f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right) \tag{12.2}
\end{equation*}
$$

exists at t.

The geometric meaning of derivative of $\mathbf{r}(t)$
When $\mathbf{r}^{\prime}(t) \neq 0$, it represents a tangent vector at t.

Figure 12.1: At a cusp, $\left.\frac{d \mathbf{r}(t)}{d t}\right|_{t=0}=0$

Definition 12.1.3. A curve $\mathbf{r}(t)$ is said to be smooth if $d \mathbf{r} / d t$ is continuous and never zero. On a smooth curve, there is no sharp corner or cusps.

Derivatives and Motion

Example 12.1.4. The image of C^{1}-curve is not necessarily "smooth". It may have sharp edges; (Fig 12.1).
(1) Cycloid: $\mathbf{c}(t)=(t-\sin t, 1-\cos t)$ has cusps when it touches x-axis. That is, when $\cos t=1$ or when $t=2 \pi n, n=1,2,3, \cdots$.
(2) Consider $\mathbf{r}(t)=\left(\frac{t^{2}}{2}, \frac{t^{3}}{3}\right)$. Eliminating t, we get

$$
(2 x)^{3}=(3 y)^{2} .
$$

We see $\frac{d \mathbf{r}(t)}{d t}=\left.\left(t^{3}, t^{2}\right)\right|_{t=0}=0$ and from Figure 12.1 we see it has a cusp when $t=0$.

At all these points, we can check that $\mathbf{c}^{\prime}(t)=0$.(Roughly speaking, tangent vector has no direction or does not exist.)

12.2 Arc Length

Definition 12.2.1 (Arc Length). Suppose a curve C has one-to-one differentiable parametrization \mathbf{r}. Then the arc length is defined by

$$
L(\mathbf{r})=\int_{a}^{b}\|\mathbf{v}(t)\| d t=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

Figure 12.2: Riemann sum of the curve length

The sum of the line segment is

$$
\begin{aligned}
\sum_{i=1}^{k} \Delta s_{i} & =\sum_{i=1}^{k}\left\|\mathbf{r}\left(t_{i}\right)-\mathbf{r}\left(t_{i-1}\right)\right\| \\
& =\sum_{i=1}^{k} \sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}+\left(\Delta z_{i}\right)^{2}} \\
& =\sum_{i=1}^{k} \sqrt{\left(\frac{\Delta x_{i}}{\Delta t_{i}}\right)^{2}+\left(\frac{\Delta y_{i}}{\Delta t_{i}}\right)^{2}+\left(\frac{\Delta z_{i}}{\Delta t_{i}}\right)^{2}} \Delta t_{i} .
\end{aligned}
$$

As $k \rightarrow \infty$ it converges to

$$
\begin{equation*}
\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t \tag{12.3}
\end{equation*}
$$

Velocity and speed

Assume the path $\mathbf{r}(t)=(x(t), y(t), z(t))$ represents the movement of an object.
Then the velocity at $t=t_{0}$ is given as

$$
\mathbf{r}^{\prime}\left(t_{0}\right)=\lim _{h \rightarrow 0} \frac{\mathbf{r}\left(t_{0}+h\right)-\mathbf{r}\left(t_{0}\right)}{h}=\left(x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right), z^{\prime}\left(t_{0}\right)\right) .
$$

Example 12.2.2. If an object follow moving along the curve $\mathbf{c}(t)=t \mathbf{i}+t^{2} \mathbf{j}+$ $e^{t} \mathbf{k}$ at time t takes off the curve at $t=2$ and travels for 5 seconds. Find the location.
sol. We assume the object travels along the tangent line after taking off
the curve. The velocity at $t=2$ is $\mathbf{c}^{\prime}(2)=\mathbf{i}+4 \mathbf{j}+e^{2} \mathbf{k}$. Hence the location 5 second after taking off the curve

$$
\begin{aligned}
\mathbf{c}(2)+5 \mathbf{c}^{\prime}(2) & =2 \mathbf{i}+4 \mathbf{j}+e^{2} \mathbf{k}+5\left(\mathbf{i}+4 \mathbf{j}+e^{2} \mathbf{k}\right) \\
& =7 \mathbf{i}+24 \mathbf{j}+6 e^{2} \mathbf{k}
\end{aligned}
$$

Hence the location is $\left(7,24,6 e^{2}\right)$.

Arc-Length Parameter

Recall : Given a C^{1}-parametrization of a curve $C:[a, b] \rightarrow \mathbb{R}^{3}$. Then we have seen that the arc length of C is given by

$$
L(\mathbf{r})=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

Definition 12.2.3. Now we fix a base point $P=P\left(t_{0}\right)$ and let the upper limit be the variable t. Then the arclength becomes a function of t, called the arc-length function :

$$
s(t)=\int_{t_{0}}^{t}\left\|\mathbf{r}^{\prime}(\tau)\right\| d \tau
$$

The arc-length (parameter)function satisfies

$$
\frac{d s}{d t}=s^{\prime}(t)=\left\|\mathbf{r}^{\prime}(t)\right\|=\text { speed }
$$

We assume $\mathbf{r}^{\prime}(t) \neq 0$ so that $\frac{d s}{d t}$ is always positive. Then we can solve for s in terms of t. Hence we can use s as a new parameter.

Example 12.2.4. For the helix $\mathbf{r}(t)=(a \cos t, a \sin t, b t)$, we can find a new parametrization by s as follows:

$$
s(t)=\int_{0}^{t}\left\|\mathbf{r}^{\prime}(\tau)\right\| d \tau=\int_{0}^{t} \sqrt{a^{2}+b^{2}} d \tau=\sqrt{a^{2}+b^{2}} t
$$

so that

$$
s=\sqrt{a^{2}+b^{2}} t, \text { or } t=\frac{s}{\sqrt{a^{2}+b^{2}}} .
$$

Hence

$$
\mathbf{r}(t(s))=\left(a \cos \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right), a \sin \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right), \frac{b s}{\sqrt{a^{2}+b^{2}}}\right) .
$$

Definition 12.2.5. The unit tangent vector \mathbf{T} of the path \mathbf{r} is the normalized velocity vector

$$
\mathbf{T}=\frac{\mathbf{v}(t)}{\|\mathbf{v}(t)\|}=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}
$$

Example 12.2.6. For the helix $\mathbf{r}=(a \cos t, a \sin t, b t)$, we have

$$
\mathbf{T}=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{-a \sin t \mathbf{i}+a \cos t \mathbf{j}+b \mathbf{k}}{\sqrt{a^{2}+b^{2}}}
$$

Example 12.2.7. For the curve $\mathbf{r}=\left(t, t^{2}, t^{3}\right)$, we have

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\mathbf{i}+2 t \mathbf{j}+3 t^{2} \mathbf{k} . \\
\mathbf{T}=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{\mathbf{i}+2 t \mathbf{j}+3 t^{2} \mathbf{k}}{\sqrt{1+4 t^{2}+9 t^{4}}} .
\end{gathered}
$$

But arclength is not easy to compute:

$$
s(t)=\int_{0}^{t} \sqrt{1+4 t^{2}+9 t^{4}} d t
$$

Example 12.2.8 (Change of the position \mathbf{r} vector w.r.t arclength). Assume $\mathbf{r}(s)$ be a parametrization by arclength parameter. Then by the chain rule and property of arclength parameter, we have

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\mathbf{r}^{\prime}(s) \frac{d s}{d t} \\
& =\mathbf{r}^{\prime}(s)\left\|\mathbf{r}^{\prime}(t)\right\| .
\end{aligned}
$$

Since $\left\|\mathbf{r}^{\prime}(t)\right\| \neq 0$, we have

$$
\mathbf{r}^{\prime}(s)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}\left(\text { i.e., } \frac{d \mathbf{r}}{d s}=\frac{\mathbf{v}}{|\mathbf{v}|}=\mathbf{T}\right)
$$

Thus $\mathbf{r}(s)$ has always unit speed (i.e., $\mathbf{r}^{\prime}(s)$ always has a unit length). The two parametrization $(a \cos t, a \sin t)$ and $(a \cos 2 \pi t, a \sin 2 \pi t)$ have different speeds

6CHAPTER 12. VECTOR VALUED FUNCTIONS AND MOTIONS IN SPACE

along the same circle. For the first one, $\mathbf{r}^{\prime}(t)=(-a \sin t, a \cos t)$. So

$$
s(t)=\int_{0}^{t} \sqrt{a^{2}} d \tau=a t .
$$

So

$$
(a \cos t, a \sin t)=\left(a \cos \frac{s}{a}, a \sin \frac{s}{a}\right) .
$$

While for the second one, $\mathbf{r}^{\prime}(t)=(-2 a \pi \sin t, 2 a \pi \cos t)$. So

$$
s(t)=\int_{0}^{t} 2 a \pi d \tau=2 a \pi t
$$

Solving $t=s / 2 a \pi$. So

$$
(a \cos 2 \pi t, a \sin 2 \pi t)=\left(a \cos \frac{s}{a}, a \sin \frac{s}{a}\right) .
$$

So the parametrization by the arc length parameter is the same. In fact, it is independent of any parametrization(Why?)

12.3 Curvature and Normal vectors of a Curve

To measure how the curve bends we need to define the following:

Definition 12.3.1. The curvature of a path \mathbf{r} is the rate of change of unit tangent vector \mathbf{T} per unit of length along the path. In other words,

$$
\kappa(t)=\left\|\frac{d \mathbf{T}}{d s}\right\|=\frac{\|d \mathbf{T} / d t\|}{d s / d t}=\frac{1}{\|\mathbf{v}\|}\left\|\frac{d \mathbf{T}}{d t}\right\| .
$$

Circular Orbits

Consider a particle moving along a circle of radius r_{0}. We can represent its motion as

$$
\mathbf{r}(t)=\left(r_{0} \cos t, r_{0} \sin t\right) .
$$

Since speed is $\left\|\mathbf{r}^{\prime}(t)\right\|=v=r_{0}$. So the motion is described as

$$
\mathbf{v}=\mathbf{r}^{\prime}(t)=\left(-r_{0} \sin t, r_{0} \cos t\right),\|\mathbf{v}\|=r_{0}
$$

$$
\begin{aligned}
\mathbf{T} & =\frac{\mathbf{v}}{\|\mathbf{v}\|}=(-\sin t, \cos t) \\
\frac{d \mathbf{T}}{d t} & =(-\cos t,-\sin t) \\
\left\|\frac{d \mathbf{T}}{d t}\right\| & =1
\end{aligned}
$$

Hence

$$
\kappa=\frac{1}{\|\mathbf{v}\|}=\frac{1}{r_{0}}=\frac{1}{\text { radius }} .
$$

Figure 12.3: \mathbf{T} turns in the direction of \mathbf{N}

Since $\mathbf{T}(t)$ is a vector whose length is constant, we have $1=\|\mathbf{T}(t)\|^{2}=$ $\mathbf{T}(t) \cdot \mathbf{T}(t)$. Taking the derivative of constant is zero. Hence

$$
0=\frac{d}{d t}[\mathbf{T}(t) \cdot \mathbf{T}(t)]=\mathbf{T}^{\prime}(t) \cdot \mathbf{T}(t)+\mathbf{T}(t) \cdot \mathbf{T}^{\prime}(t)=2 \mathbf{T}(t) \cdot \mathbf{T}^{\prime}(t) .
$$

Thus $\mathbf{T}^{\prime}(t)$ is perpendicular to $\mathbf{T}(t)$ for all t.
The vector $d \mathbf{T} / d s$ turns in the direction along which the curve turns.

Definition 12.3.2. At a point where $\kappa \neq 0$, the principal unit normal vector for a smooth curve in the plane is

$$
\mathbf{N}=\frac{1}{\kappa} \frac{d \mathbf{T}}{d s}=\frac{d \mathbf{T} / d t}{\|d \mathbf{T} / d t\|}
$$

The second equality is verified as follows.

$$
\begin{aligned}
\mathbf{N} & =\frac{d \mathbf{T} / d s}{\|d \mathbf{T} / d s\|} \text { (use Chain rule) } \\
& =\frac{(d \mathbf{T} / d t)(d t / d s)}{\|d \mathbf{T} / d t\|(d t / d s)} \\
& =\frac{d \mathbf{T} / d t}{\|d \mathbf{T} / d t\|}
\end{aligned}
$$

The vector $\frac{d \mathbf{T}}{d s}$ point in the direction in which \mathbf{T} turns as the curve bends.

Figure 12.4: Circle of Curvature

Circle of Curvature for Plane curves

The circle of curvature or osculating circle at a point P is defined when $\kappa \neq 0$. It is a circle that
(1) has the same tangent line as the curve has
(2) has the same curvature as the curve has
(3) has center in the concave side

The radius of curvature of the curve at P is the radius of the circle of curvature. (i.e, $1 / \kappa$)

Example 12.3.3. Find the osculating circle of parabola $y=x^{2}$ at the origin.
sol. We parameterize the parabola by

$$
\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}
$$

$$
\begin{aligned}
\mathbf{v} & =\frac{d \mathbf{r}}{d t}=\mathbf{i}+2 t \mathbf{j} \\
|\mathbf{v}| & =\sqrt{1+4 t^{2}} \\
\mathbf{T} & =\frac{\mathbf{v}}{|\mathbf{v}|}=\left(1+4 t^{2}\right)^{-1 / 2} \mathbf{i}+2 t\left(1+4 t^{2}\right)^{-1 / 2} \mathbf{j} \\
\frac{d \mathbf{T}}{d t}=-4 t(1 & \left.+4 t^{2}\right)^{-3 / 2} \mathbf{i}+\left[2\left(1+4 t^{2}\right)^{-1 / 2}-8 t^{2}\left(1+4 t^{2}\right)^{-3 / 2}\right] \mathbf{j}
\end{aligned}
$$

When $t=0, \mathbf{N}=\mathbf{j}$ and

$$
\kappa=\frac{1}{|\mathbf{v}(0)|}\left|\frac{d \mathbf{T}}{d t}(0)\right|=\sqrt{0^{2}+2^{2}}=2
$$

the center of the osculating circle is

$$
(x-0)^{2}+\left(y-\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
$$

Curvature and normal vectors for Space curves

Example 12.3.4. For the helix $\mathbf{r}(t)=(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+b t \mathbf{k}, a, b>0$.

$$
\begin{aligned}
\mathbf{v} & =-(a \sin t) \mathbf{i}+(a \cos t) \mathbf{j}+b \mathbf{k} \\
|\mathbf{v}| & =\sqrt{a^{2} \sin ^{2} t+a^{2} \cos ^{2} t+b^{2}}=\sqrt{a^{2}+b^{2}} \\
\mathbf{T} & =\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{\sqrt{a^{2}+b^{2}}}[-(a \sin t) \mathbf{i}+(a \cos t) \mathbf{j}+b \mathbf{k}]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\kappa & =\frac{1}{|\mathbf{v}|}\left|\frac{d \mathbf{T}}{d t}\right| \\
& =\frac{1}{\sqrt{a^{2}+b^{2}}}\left|\frac{1}{\sqrt{a^{2}+b^{2}}}[-(a \cos t) \mathbf{i}-(a \sin t) \mathbf{j}]\right| \\
& =\frac{a}{a^{2}+b^{2}}|[-\cos t \mathbf{i}-\sin t \mathbf{j}]|=\frac{a}{a^{2}+b^{2}}
\end{aligned}
$$

Now the normal vector $\mathbf{N}=\mathbf{j}$.

$$
\begin{aligned}
\frac{d \mathbf{T}}{d t} & =-\frac{1}{\sqrt{a^{2}+b^{2}}}[(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}] \\
\left|\frac{d \mathbf{T}}{d t}\right| & =\frac{1}{\sqrt{a^{2}+b^{2}}} \sqrt{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t}=\frac{a}{\sqrt{a^{2}+b^{2}}} \\
\mathbf{N} & =\frac{d \mathbf{T} / d t}{|d \mathbf{T} / d t|}=-\frac{\sqrt{a^{2}+b^{2}}}{a} \frac{1}{\sqrt{a^{2}+b^{2}}}[(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}] \\
& =-(\cos t) \mathbf{i}-(\sin t) \mathbf{j} .
\end{aligned}
$$

Hence \mathbf{N} is always lying in the $x y$ - plane and pointing toward z axis.

12.4 Tangent and Normal components of a

We define the binormal vector \mathbf{B} by

$$
\mathbf{B}=\mathbf{T} \times \mathbf{N} .
$$

The three vectors \mathbf{T}, \mathbf{N} and \mathbf{B} form an orthogonal coordinate system (called TNB frame.

We see

$$
\begin{align*}
\mathbf{v} & =\frac{d \mathbf{r}}{d t}=\frac{d \mathbf{r}}{d s} \frac{d s}{d t}=\mathbf{T} \frac{d s}{d t} \\
\mathbf{a} & =\frac{d \mathbf{v}}{d t}=\frac{d}{d t}\left(\mathbf{T} \frac{d s}{d t}\right)=\frac{d^{2} s}{d t^{2}} \mathbf{T}+\frac{d s}{d t} \frac{d \mathbf{T}}{d t} \\
& =\frac{d^{2} s}{d t^{2}} \mathbf{T}+\frac{d s}{d t}\left(\frac{d \mathbf{T}}{d s} \frac{d s}{d t}\right)=\frac{d^{2} s}{d t^{2}} \mathbf{T}+\frac{d s}{d t}\left(\kappa \mathbf{N} \frac{d s}{d t}\right) \\
& =\frac{d^{2} s}{d t^{2}} \mathbf{T}+\kappa\left(\frac{d s}{d t}\right)^{2} \mathbf{N}==a_{T} \mathbf{T}+a_{N} \mathbf{N} . \\
& a_{N}=\sqrt{\|\mathbf{a}\|^{2}-a_{T}^{2}} \tag{12.4}
\end{align*}
$$

Torsion

How does $d \mathbf{B} / d s$ behaves in relation to $\mathbf{T}, \mathbf{N}, \mathbf{B}$?

$$
\frac{d \mathbf{B}}{d s}=\frac{d(\mathbf{T} \times \mathbf{N})}{d s}=\frac{d \mathbf{T}}{d s} \times \mathbf{N}+\mathbf{T} \times \frac{d \mathbf{N}}{d s}=0+\mathbf{T} \times \frac{d \mathbf{N}}{d s} .
$$

Since $d \mathbf{B} / d s$ is orthogonal to \mathbf{T} and \mathbf{B}, it is a scalar multiple of \mathbf{N}. Hence we have

$$
\frac{d \mathbf{B}}{d s}=-\tau \mathbf{N}
$$

for some scalar τ. This τ is called torsion and

$$
\tau=-\frac{d \mathbf{B}}{d s} \cdot \mathbf{N}
$$

(1) $\kappa=|d \mathbf{T} / d s|$ is the rate at which the normal plane turns about the point P as the point moves along the curve.
(2) $\tau=-(d \mathbf{B}) / d s) \mathbf{N}$ is the rate at which the osculating plane turns about \mathbf{T} as the point moves along the curve.

Formula for computing the curvature and torsion

$$
\begin{aligned}
\mathbf{v} \times \mathbf{a} & =\left(\frac{d s}{d t} \mathbf{T}\right) \times\left[\frac{d^{2} s}{d t^{2}} \mathbf{T}+\kappa\left(\frac{d s}{d t}\right)^{2} \mathbf{N}\right] \\
& =\left(\frac{d s}{d t} \frac{d^{2} s}{d t^{2}}\right)(\mathbf{T} \times \mathbf{T})+\kappa\left(\frac{d s}{d t}\right)^{3}(\mathbf{T} \times \mathbf{N}) \\
& =\kappa\left(\frac{d s}{d t}\right)^{3} \mathbf{B}
\end{aligned}
$$

Hence

$$
\begin{align*}
|\mathbf{v} \times \mathbf{a}| & =\kappa\left|\frac{d s}{d t}\right|^{3}|\mathbf{B}|=\kappa|\mathbf{v}|^{3} . \\
& \kappa=\frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^{3}} \tag{12.5}
\end{align*}
$$

12CHAPTER 12. VECTOR VALUED FUNCTIONS AND MOTIONS IN SPACE

Chapter 14

Partial Derivative

14.1 Functions of several variables

Definition 14.1.1. Let $\mathbf{x}_{0} \in \mathbb{R}^{n}$. The open ball (or disk) of radius r with center \mathbf{x}_{0} is the set of all points \mathbf{x} such that $\left\|\mathbf{x}-\mathbf{x}_{0}\right\|<r$. This is denoted by $B_{r}\left(\mathbf{x}_{0}\right)\left(D_{r}\left(\mathbf{x}_{0}\right)\right)$ or $B\left(\mathbf{x}_{0} ; r\right)$. A closed ball is a set of the form $\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq r$.

Definition 14.1.2 (Interior, Open sets). Let $R \subset \mathbb{R}^{n}$. A point $\mathrm{x} \in \mathbb{R}^{n}$ is called an interior point of R if there is disk about \mathbf{x} completely contained in R. The set of all interior points of R is said to be interior of R.

A set $R \subset \mathbb{R}^{n}$ is said to be open if every point $\mathbf{x}_{0} \in R$ is an interior point, i.e., there exists some $r>0$ such that $B_{r}\left(\mathbf{x}_{0}\right)$ is contained in R (in symbol, $\left.B_{r}\left(\mathbf{x}_{0}\right) \subset R\right)$.) Finally, a neighborhood of a point $x \in R$ is an open set containing x and contained in R.

Figure 14.1: Interior point and boundary point: any neighborhood $D_{\epsilon}\left(\mathbf{x}_{0}\right)$ of a boundary point \mathbf{x}_{0} contains both points of A and points not in A

Graphs, Level Curves and Contours of functions

Definition 14.1.3. The graph of a function is the set

$$
\operatorname{graph}(f)=\left\{(\mathbf{x}, f(\mathbf{x})) \in \mathbb{R}^{n+1} \mid \mathbf{x} \in D \subset \mathbb{R}^{n}\right\} .
$$

Definition 14.1.4. The level set of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the set of all \mathbf{x} where the function f has constant value:

$$
S_{c}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid f(\mathbf{x})=c, c \in \mathbb{R}\right\} .
$$

Definition 14.1.5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. The section of the graph of f by the plane $x=c$ is the set of all points (x, y, z), where $z=f(c, y)$, i.e,

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=f(c, y)\right\} .
$$

Limits

Definition 14.1.6 (Limit using $\varepsilon-\delta$). Let $\mathbf{f}: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. We say the limit of \mathbf{f} at $\mathbf{x}_{0} \in \mathbb{R}^{n}$ is \mathbf{L}, if for any $\varepsilon>0$ there exists some positive δ such that for all $\mathbf{x} \in D$ satisfying $0<\left\|\mathbf{x}-\mathbf{x}_{0}\right\|<\delta$, the inequality $\|\mathbf{f}(\mathbf{x})-\mathbf{L}\|<\varepsilon$ holds. We write

$$
\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}} \mathbf{f}(\mathbf{x})=\mathbf{L}
$$

Example 14.1.7 (Two-path test for nonexistence of a limit). Let $f: \mathbb{R}^{2}-\mathbf{0} \rightarrow$ \mathbb{R} be defined by

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}} \text { or }\left(\frac{x^{2}-y^{4}}{x^{2}+y^{4}}\right) .
$$

Study the behavior near the origin.
sol. This function is undefined at $\mathbf{0}=(0,0)$. We observe

$$
f(x, 0)=\frac{x^{2}}{x^{2}}=1, f(0, y)=\frac{-y^{2}}{y^{2}}=-1 .
$$

Hence limit cannot exists.

14.2 Partial Derivatives

Definition 14.2.1. Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a real valued function. Then the partial derivative with respect to i-th variable x_{i} is:

$$
\lim _{h \rightarrow 0} \frac{f\left(\mathbf{x}+h \mathbf{e}_{i}\right)-f(\mathbf{x})}{h}=\frac{\partial f}{\partial x_{i}}\left(\mathbf{x}_{0}\right)
$$

whenever the limit exists.
Example 14.2.2. Find partial derivatives of $g(x, y)=x y / \sqrt{x^{2}+y^{2}}$ at $(1,1)$.
sol. First we compute $\frac{\partial g}{\partial x}(1,1)$:

$$
\begin{aligned}
\frac{\partial g}{\partial x}(1,1) & =\frac{y \sqrt{x^{2}+y^{2}}-x y\left(x / \sqrt{x^{2}+y^{2}}\right)}{x^{2}+y^{2}} \\
& =\frac{y\left(x^{2}+y^{2}\right)-x^{2} y}{\left(x^{2}+y^{2}\right)^{-3 / 2}} \\
& =2^{3 / 2}
\end{aligned}
$$

Example 14.2.3. Find partial derivatives at $(0,0)$ of the function defined by

$$
f(x, y)= \begin{cases}\frac{3 x^{2} y-y^{2}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

sol. Use definition:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=\lim _{x \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=0 \\
& \frac{\partial f}{\partial y}(0,0)=\lim _{y \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=-1
\end{aligned}
$$

Existence of partial derivatives does not guarantee the continuity

Example 14.2.4. Given

$$
f(x, y)= \begin{cases}0, & x y \neq 0 \\ 1, & x y=0\end{cases}
$$

We can show that
(1) Both partial derivatives at $(0,0)$ are zero.
(2) Find the limit of f along the line $y=x$.
(3) f is not continuity at $(0,0)$.

Differentiation of a function of several variable

Review: A one variable function $y=f(x)$ is said to be differentiable at a point a if it satisfies((Figure 14.2))

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{x-a}=0 \tag{14.1}
\end{equation*}
$$

Alternatively, we have

$$
\begin{equation*}
\Delta y=f^{\prime}\left(x_{0}\right) \Delta x+\epsilon \Delta x \tag{14.2}
\end{equation*}
$$

where $\epsilon \rightarrow 0$ as $\Delta x \rightarrow 0$.

Figure 14.2: tangent approximation of a function of one variable

Definition 14.2.5. We say $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at (a, b) if $\partial f / \partial x$ and $\partial f / \partial y$ exists and for $(x, y) \rightarrow(a, b)$, the limit

$$
\frac{f(x, y)-f(a, b)-\frac{\partial f}{\partial x}(a, b)(x-a)-\frac{\partial f}{\partial y}(a, b)(y-b)}{\|(x, y)-(a, b)\|} \rightarrow 0
$$

Alternative : $z=f(x, y)$ is differentiable at (a, b) if $\partial f / \partial x$ and $\partial f / \partial y$ exists and

$$
\begin{equation*}
\Delta z=\frac{\partial f}{\partial x}(a, b) \Delta x+\frac{\partial f}{\partial y}(a, b) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y \tag{14.3}
\end{equation*}
$$

where ϵ_{1} and $\epsilon_{2} \rightarrow 0$ as both $\Delta x, \Delta y \rightarrow 0$. If a function is differentiable at all points of its domain, we say it is differentiable.

Definition 14.2.6. In general, Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Then we say f differentiable at \mathbf{a} if

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{f(\mathbf{x})-f(\mathbf{a})-\left[\frac{\partial f}{\partial x_{1}}(\mathbf{a}), \cdots, \frac{\partial f}{\partial x_{n}}(\mathbf{a})\right]\left[\begin{array}{c}
x_{1}-a_{1} \\
\cdots \\
x_{n}-a_{n}
\end{array}\right]}{\|\mathbf{x}-\mathbf{a}\|}=0
$$

In short,

$$
\begin{equation*}
\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{f(\mathbf{x})-f(\mathbf{a})-\mathbf{D} f(\mathbf{a})(\mathbf{x}-\mathbf{a})}{\|\mathbf{x}-\mathbf{a}\|}=0 \tag{14.4}
\end{equation*}
$$

Theorem 14.2.7. Suppose f_{x}, f_{y} are continuous at $\mathbf{x}_{0}=\left(x_{0}, y_{0}\right) \in D$ (an open region). Then (14.3) holds.

Example 14.2.8. Find the tangent plane of $f(x, y)=x^{2}+y^{2}$ at $(0,0)$.
sol. We see $(\partial f / \partial x)(0,0)=(\partial f / \partial y)(0,0)=0$ and

$$
\begin{gathered}
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-\frac{\partial f}{\partial x}(0,0)(x-0)-\frac{\partial f}{\partial y}(0,0)(y-0)}{\|(x, y)-(0,0)\|} \\
=\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)}{\|(x, y)\|}=\lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}}=0 .
\end{gathered}
$$

Hence it is differentiable at $(0,0)$. The tangent plane is $z=0$.

Example 14.2.9. Show the function defined by

$$
f(x, y)= \begin{cases}\frac{2 x^{2} y^{2}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

is differentiable at $(0,0)$.
sol. It is easy to see that $f_{x}(0,0)=f_{y}(0,0)=0$ by definition. Now

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-0-0}{\|(x, y)-(0,0)\|}=\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)}{\|(x, y)\|} \\
& =\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} \leq \lim _{(x, y) \rightarrow(0,0)} \frac{x y\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3 / 2}} \\
& =\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\left(x^{2}+y^{2}\right)^{1 / 2}} \\
& \leq \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{2\left(x^{2}+y^{2}\right)^{1 / 2}}=0 .
\end{aligned}
$$

Differentiability of vector valued function

Definition 14.2.10. A function $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be differentiable at a point \mathbf{a} if all the partial derivatives of \mathbf{f} exists at a,

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})-\mathbf{D} \mathbf{f}(\mathbf{a})(\mathbf{x}-\mathbf{a})\|}{\|\mathbf{x}-\mathbf{a}\|}=0 .
$$

If $m=1$, then

$$
\mathbf{D} f=\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right] .
$$

Example 14.2.11. Find the derivative of $\mathbf{D f}(x, y)$.
(1) $\mathbf{f}(x, y)=(x y, x+y)$
(2) $\mathbf{f}(x, y)=\left(e^{x+y}, x^{2}+y^{2}, x e^{y}\right)$
sol. (1) $f_{1}=x y, f_{2}=x+y$. Hence

$$
\mathbf{D f}(\mathbf{x})=\left[\begin{array}{ll}
y & x \\
1 & 1
\end{array}\right]
$$

Example 14.2.12. Show $f(x, y)=(x y, x+y)$ is differentiable at $(0,0)$.
sol. From example 14.2.11,

$$
\mathbf{D f}(0,0)=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \frac{\left\|\mathbf{f}(x, y)-\mathbf{f}(0,0)-\mathbf{D} \mathbf{f}(0,0)\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\|}{\|(x, y)-(0,0)\|} \\
& \quad=\lim _{(x, y) \rightarrow(0,0)} \frac{\|(x y, x+y)-(0, x+y)\|}{\|(x, y)\|} \\
& \quad=\lim _{(x, y) \rightarrow(0,0)} \frac{|x y|}{\sqrt{x^{2}+y^{2}}}=0 .
\end{aligned}
$$

Relation with continuity

Theorem 14.2.13. If $\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has all partial derivatives $\partial f_{i} / \partial x_{j}$ exist and continuous in a neighborhood of \mathbf{x}, then \mathbf{f} is differentiable at \mathbf{x}.

Example 14.2.14. Given

$$
f(x, y)=\left\{\begin{array}{ll}
\frac{x y}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array} .\right.
$$

Show that
(1) The partial derivatives at $(0,0)$ exist.
(2) f is not differentiable at $(0,0)$.
sol. (1) From definition, we have

$$
\frac{\partial f}{\partial x}(0,0)=\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, 0)-f(0,0)}{x}=0
$$

and

$$
\frac{\partial f}{\partial y}(0,0)=\lim _{(x, y) \rightarrow(0,0)} \frac{f(0, y)-f(0,0)}{y}=0
$$

(2) Thus we have $\mathbf{D} f(0,0)$. We consider the following limit:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-\mathbf{0} \cdot(x, y)^{T}}{\|(x, y)\|}=\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}
$$

Since $\lim _{(x, y) \rightarrow(0,0)} x y /\left(x^{2}+y^{2}\right)$ does not exists, f is not differentiable at $(0,0)$.

14.3 Chain rule

Chain rule in several variables

Theorem 14.3.1 (Chain rule-simple). Suppose $\mathbf{x}(t)=(x(t), y(t)): \mathbb{R} \rightarrow \mathbb{R}^{2}$ differentiable at t_{0} and $f: X \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ differentiable at $\mathbf{x}_{0}=\mathbf{x}\left(t_{0}\right)$ then the composite function $h(t)=(f \circ \mathbf{x})(t): \mathbb{R} \rightarrow \mathbb{R}(h(t)=f(x(t), y(t)))$ is differentiable at t_{0} and its derivative $d h / d t\left(t_{0}\right)$ is

$$
\frac{d h}{d t}\left(t_{0}\right)=\frac{\partial f}{\partial x}\left(\mathbf{x}_{0}\right) \frac{d x}{d t}\left(t_{0}\right)+\frac{\partial f}{\partial y}\left(\mathbf{x}_{0}\right) \frac{d y}{d t}\left(t_{0}\right)
$$

Proof. We have

$$
\begin{aligned}
\frac{h(t)-h\left(t_{0}\right)}{t-t_{0}} & =\frac{f(x(t), y(t))-f\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)}{t-t_{0}} \\
& =\frac{f(x(t), y(t))-f\left(x\left(t_{0}\right), y(t)\right)+f\left(x\left(t_{0}\right), y(t)\right)-f\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)}{t-t_{0}}
\end{aligned}
$$

Let t approach t_{0}. Then we obtain the result.

One can use a simpler notation: Let $P_{0}=\left(x_{0}, y_{0}\right)=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)$. Then

$$
\Delta h=f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

As $\Delta x, \Delta y \rightarrow 0$, we see

$$
\begin{equation*}
\frac{\Delta h}{\Delta t}=f_{x} \frac{\Delta x}{\Delta t}+f_{y} \frac{\Delta y}{\Delta t}+\epsilon_{1} \frac{\Delta x}{\Delta t}+\epsilon_{2} \frac{\Delta y}{\Delta t} \rightarrow f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t} \tag{14.5}
\end{equation*}
$$

Example 14.3.2. Verify the chain rule for $f(x, y)=e^{x y}$ and $\mathbf{x}(t)=\left(t^{2}, 2 t\right)$.
Sol. Since $h(t)=f \circ \mathbf{x}(t)=f(x(t), y(t))=e^{2 t^{3}}$, we have $d h / d t=6 t^{2} e^{2 t^{3}}$. On the other hand, by chain rule, we have

$$
\frac{d h}{d t}=y e^{x y} \cdot 2 t+x e^{x y} \cdot 2=6 t^{2} e^{2 t^{3}}
$$

Example 14.3.3. Let $\mathbf{f}: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be given by $\mathbf{f}=\left(f_{1}, \cdots, f_{m}\right)$ and $g(\mathbf{x})=\sin [\mathbf{f}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x})]$. Compute $D g(\mathbf{x})$.
sol. First note that

$$
\mathbf{D} g(\mathbf{x})=\cos [\mathbf{f}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x})] \mathbf{D}[\mathbf{f}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x})]
$$

We compute $\mathbf{D}[\mathbf{f}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x})]$ which is

$$
\begin{aligned}
\mathbf{D} h & =\left[2 f_{1} \frac{\partial f_{1}}{\partial x_{1}}+\cdots+2 f_{m} \frac{\partial f_{m}}{\partial x_{1}}, \cdots, 2 f_{1} \frac{\partial f_{1}}{\partial x_{n}}+\cdots+2 f_{m} \frac{\partial f_{m}}{\partial x_{n}}\right] \\
& =2 \mathbf{f}(\mathbf{x}) \cdot \mathbf{D} \mathbf{f}(\mathbf{x})
\end{aligned}
$$

where $\mathbf{D} \mathbf{f}(\mathbf{x})$ is the derivative of \mathbf{f}. Finally, we see $\mathbf{D} g(\mathbf{x})=2 \cos [\mathbf{f}(\mathbf{x})$. $\mathbf{f}(\mathbf{x}) \mathbf{f} \mathbf{f}(\mathbf{x}) \cdot \mathbf{D} \mathbf{f}(\mathbf{x})$.

Example 14.3.4 (Polar/Rectangular coordinates conversions). Recall

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}\right.
$$

Suppose $w=f(x, y)$ is given. We would like view it as a function of (r, θ), i.e,

$$
w=g(r, \theta):=f(x(r, \theta), y(r, \theta))
$$

and compute $\frac{\partial g}{\partial r}, \frac{\partial g}{\partial \theta}$.

$$
\left[\begin{array}{ll}
\frac{\partial g}{\partial r} & \frac{\partial g}{\partial \theta}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right]\left[\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right]
$$

Entrywise, we see

$$
\begin{cases}\frac{\partial w}{\partial r} & =\cos \theta \frac{\partial w}{\partial x}+\sin \theta \frac{\partial w}{\partial y} \tag{14.6}\\ \frac{\partial w}{\partial \theta} & =-r \sin \theta \frac{\partial w}{\partial x}+r \cos \theta \frac{\partial w}{\partial y}\end{cases}
$$

If we extract the derivative symbol only, we get a differential operator:

$$
\begin{cases}\frac{\partial}{\partial r} & =\cos \theta \frac{\partial}{\partial x}+\sin \theta \frac{\partial}{\partial y} \tag{14.7}\\ \frac{\partial}{\partial \theta} & =-r \sin \theta \frac{\partial}{\partial x}+r \cos \theta \frac{\partial}{\partial y}\end{cases}
$$

Similarly, we can show

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial x}=\cos \theta \frac{\partial}{\partial r}-\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \tag{14.8}\\
\frac{\partial}{\partial y}=\sin \theta \frac{\partial}{\partial r}+\frac{\cos \theta}{r} \frac{\partial}{\partial \theta}
\end{array}\right.
$$

Implicit function theorem

Theorem 14.3.5 (Implicit function theorem). Let $F: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be class \mathcal{C}^{1} and let \mathbf{a} be a point of the level set $S=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid F(\mathbf{x})=c\right\}$. If $F_{x_{n}}(\mathbf{a}) \neq 0$, then there is a neighborhood U of $\left(a_{1}, a_{2}, \cdots, a_{n-1}\right)$ in \mathbb{R}^{n-1} and a neighborhood V of a_{n} in \mathbb{R}, and a function $f: U \subset \mathbb{R}^{n-1} \rightarrow V$ of class \mathcal{C}^{1} such that $x_{n}=f\left(x_{1}, x_{2}, \cdots, x_{n-1}\right)$.

Example 14.3.6. Consider ellipsoid $x^{2} / 4+y^{2} / 36+z^{2} / 9=1$. It is the level set of the function

$$
F(x, y, z)=\frac{x^{2}}{4}+\frac{y^{2}}{36}+\frac{z^{2}}{9}
$$

At $(\sqrt{2}, \sqrt{6}, \sqrt{3})$, we can check $\frac{\partial F}{\partial z} \neq 0$. Hence z can be solved as function of x and y.

Example 14.3.7. Let $F(x, y, z)=x^{2} z^{2}-y$ and S be the level set of height 0 . For points where $F_{x}=2 z^{2} \neq 0$ one can solve for other variables.

14.4 Directional derivatives and Gradient

Definition 14.4.1. Let $\mathbf{u} \in \mathbf{R}^{n}$ be a unit vector and $\mathbf{a} \in X \subset \mathbf{R}^{n}$, the directional derivative of $f: X \rightarrow \mathbb{R}$ at a along \mathbf{u} is $\mathbf{D}_{\mathbf{u}} f(\mathbf{a})$ defined by

$$
\left.\frac{d}{d t} f(\mathbf{a}+t \mathbf{u})\right|_{t=0}
$$

Theorem 14.4.2. If $f(\mathbf{x}): X \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ is differentiable and $\mathbf{a} \in X$, then the directional derivative of f at \mathbf{a} along \mathbf{u} exists and is given by

$$
D_{\mathbf{u}} f(\mathbf{a})=\operatorname{grad} f(\mathbf{a}) \cdot \mathbf{u}=\nabla f(\mathbf{a}) \cdot \mathbf{u} .
$$

Example 14.4.3. Compute the rate of change of $f(x, y, z)=x y-z^{2}$ at $(1,0,1)$ along $(1,1,1)$.

Figure 14.3: Directional Derivative
sol. The unit vector to $(1,1,1)$ is $\mathbf{u}=(1 / \sqrt{3})(1,1,1)$. The gradient of f at $(1,0,1)$ is

$$
\begin{aligned}
\nabla f(1,0,1) & =\left.\left(f_{x}, f_{y}, f_{z}\right)\right|_{(1,0,1)}=\left.(y, x,-2 z)\right|_{(1,0,1)} \\
& =(0,1,-2) \cdot\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)=-\frac{1}{\sqrt{3}} .
\end{aligned}
$$

Direction of steepest ascent(descent)

Gradient is normal to the level set

Consider the level set(surface) of $f(x, y, z)$:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z)=k\right\}
$$

Suppose a curve c passes the point $\mathbf{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ lies on the surface S. Then $f(\mathbf{c}(t))=k$ holds. Then we have by chain rule

$$
0=\frac{d}{d t} f(\mathbf{c}(t))=\nabla f(\mathbf{c}(t)) \cdot \mathbf{c}^{\prime}(t)
$$

Theorem 14.4.4. Suppose $f(x, y, z)$ is differentiable and $\nabla f\left(\mathbf{x}_{0}\right) \neq 0$. Then $\nabla f\left(\mathbf{x}_{0}\right)$ is normal to the level surface $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z)=k\right\}$.

14.5 Tangent Plane and differentials

Let us consider the function $z=f(x, y)$.
The direction vector of the tangent line to the y section is $\left(1,0, f_{x}(a, b)\right)$. Similarly, the direction vector of the tangent line to the x - section is $\mathbf{v}:=$ $\left(0,1, f_{y}(a, b)\right)$. Hence the tangent plane is determined by he normal vector $\mathbf{N}=\mathbf{u} \times \mathbf{v}$. By computation, we see

$$
\mathbf{u} \times \mathbf{v}=-f_{x}(a, b) \mathbf{i}-f_{y}(a, b) \mathbf{j}+\mathbf{k} .
$$

If (x, y, z) is any point on the plane, then we see $(x-a, y-b, z-f(a, b)) \perp \mathbf{N}$.
Hence

$$
z=f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b) .
$$

Figure 14.4: Geometric meaning of partial derivative

Definition 14.5.1. The tangent plane plane to the surface $S=\{(x, y, z) \in$ $\left.\mathbb{R}^{3} \mid f(x, y, z)=k\right\}$ at $\mathbf{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ is given by

$$
\begin{gathered}
\nabla f\left(\mathbf{x}_{0}\right) \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)=0, \quad \text { or } \\
\frac{\partial f}{\partial x}\left(\mathbf{x}_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(\mathbf{x}_{0}\right)\left(y-y_{0}\right)+\frac{\partial f}{\partial z}\left(\mathbf{x}_{0}\right)\left(z-z_{0}\right)=0 .
\end{gathered}
$$

Compare this with the definition earlier for the graph of $z=f(x, y)$:

$$
z-z_{0}=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

Example 14.5.2. Find the equation of the tangent plane to $3 x y+z^{2}=4$ at $(1,1,1)$.
sol. The gradient $-\nabla f=(3 y, 3 x, 2 z)$ at $(1,1,1)$ is $(3,3,2)$. Thus the tangent plane is

$$
(3,3,2) \cdot(x-1, y-1, z-1)=0
$$

Linearization of a function

Suppose f is differentiable near a point (a, b). Then $z=f(x, y)$ satisfies

$$
f(x, y)-f(a, b)=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

where ϵ_{1} and $\epsilon_{2} \rightarrow 0$ as both $\Delta x, \Delta y \rightarrow 0$.

Differential in several variable

Definition 14.5.3. The total differential of f, denoted by $d f$ is

$$
d f=\frac{\partial f}{\partial x_{1}}(\mathbf{x}) d x_{1}+\cdots+\frac{\partial f}{\partial x_{n}}(\mathbf{x}) d x_{n}
$$

The significance of differential is that for small $\Delta \mathbf{x}$

$$
d f \approx \Delta f
$$

Here $\Delta \mathbf{x}=\left(d x_{1}, \cdots, d x_{n}\right)$ denote small change in the variables and it is also written as $\Delta \mathbf{x}=\left(\Delta x_{1}, \cdots, \Delta x_{n}\right)$.

Example 14.5.4. Find the differential of $f(x, y, z)=e^{x+y} \sin (y z)$.

$$
\begin{aligned}
d f & =\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z \\
& =e^{x+y} \sin (y z) d x+e^{x+y}(\sin (y z)+z \cos (y z)) d y+e^{x+y} y \cos (y z) d z
\end{aligned}
$$

14.6 Extrema of real valued functions

Local Max, Min

Definition 14.6.1. Let $f(x, y)$ be defined in a region $R \subset \mathbb{R}^{n}$ containing $\mathbf{a}=(a, b)$. We say

- $f(a, b)$ is a local maximum if there is a neighborhood U of a such that $f(\mathbf{a}) \geq f(\mathbf{x})$ for all $\mathbf{x} \in U$.
- local minimum if there is a neighborhood U of a such that $f(\mathbf{a}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in U$.

Theorem 14.6.2 (First derivative test for local extrema). If $f: R \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $\mathbf{a} \in \mathbb{R}^{n}$ and assumes an extreme value there, then $\mathbf{D} f(\mathbf{a})=$ 0.

Proof. Suppose f has local maximum at a. Then for any $\mathbf{h} \in \mathbb{R}^{n}$, the function $g(t)=f(\mathbf{a}+t \mathbf{h})$ has a local maximum. Hence

$$
g^{\prime}(0)=\mathbf{D}_{\mathbf{h}} f(\mathbf{a})=\nabla f(\mathbf{a}) \cdot \mathbf{h}=0
$$

Sine this holds for every $\mathbf{h}, \nabla f(\mathbf{a})=\mathbf{0}$.
Definition 14.6.3. A point $\mathbf{a} \in \mathbb{R}^{n}$ is called a critical point if f is not differentiable or $\nabla f(\mathbf{a})=\mathbf{0}=(0, \ldots, 0)$.

A critical point \mathbf{a} is called a saddle point if for every disk centered at a, there is a point \mathbf{x} where $f(\mathbf{x})>f(\mathbf{a})$ and a point \mathbf{x} where $f(\mathbf{x})<f(\mathbf{a})$.

Example 14.6.4. Find critical points of $z=x^{2} y+y^{2} x$ and investigate their behavior.
sol. From

$$
z_{x}=2 x y+y^{2}=0, \quad z_{y}=2 x y+x^{2}=0,
$$

we obtain $x^{2}=y^{2}$. For $x=y$, we get $2 y^{2}+y^{2}=0$ and $(x, y)=(0,0)$. For $x=-y$, we again get $x=y=0$. Now for $x=y, z=2 x^{3}$. Not a extreme. So a saddle.

Example 14.6.5. Find the extrema of $z=2\left(x^{2}+y^{2}\right) e^{-x^{2}-y^{2}}$.
sol.

$$
\begin{aligned}
& z_{x}=\left[4 x+2(-2 x)\left(x^{2}+y^{2}\right)\right] e^{-\left(x^{2}+y^{2}\right)}=4 x\left(1-x^{2}-y^{2}\right) e^{-\left(x^{2}+y^{2}\right)} \\
& z_{y}=4 y\left(1-x^{2}-y^{2}\right) e^{-\left(x^{2}+y^{2}\right)} .
\end{aligned}
$$

Solving these, we obtain $x=y=0$ or $x^{2}+y^{2}=1$. We can see $(0,0)$ is a point of local minimum, and the points on the crater's rim are points of local maximum. (Use $t=x^{2}+y^{2}$ so that $z=t e^{-t}$ has a local maximum at $t=1$.)

Derivative test for local extreme values

More generally we have second derivative test:
Theorem 14.6.6 (Second derivative test). Suppose f is \mathcal{C}^{2} on an open subset U of \mathbb{R}^{2} and $f_{x}\left(x_{0}, y_{0}\right)=f_{y}\left(x_{0}, y_{0}\right)=0$ holds, i.e., $\left(x_{0}, y_{0}\right)$ is a critical point.) Let $D=f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-\left(f_{x y}\left(x_{0}, y_{0}\right)\right)^{2}$. Then the following holds:
(1) f has a local max. if $f_{x x}\left(x_{0}, y_{0}\right)<0$ and $f_{x x} f_{y y}-f_{x y}^{2}>0$
(2) f has a local min. if $f_{x x}\left(x_{0}, y_{0}\right)>0$ and $f_{x x} f_{y y}-f_{x y}^{2}>0$
(3) f has a saddle point if $f_{x x} f_{y y}-f_{x y}^{2}<0$

Here $D=f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-\left(f_{x y}\left(x_{0}, y_{0}\right)\right)^{2}$ is called the discriminant.

Example 14.6.7. Find the extrema of $f=x^{2}+x y+y^{2}+2 x-2 y+5$.
sol.
First we find the critical point by setting $\mathbf{D} f(x, y)=0$.

$$
\begin{aligned}
& f_{x}=2 x+y+2=0 \\
& f_{y}=x+2 y-2=0
\end{aligned}
$$

Thus $(-2,2)$ is the only critical point. To determine whether this point is a max or \min (or neither), we do as follows:

$$
f_{x x}=2, f_{y y}=2, f_{x y}=1, D=2 \cdot 2-1^{2}>0
$$

Hence it is a local minimum.

Example 14.6.8. Classify the critical points of the following functions.
(1) $g(x, y)=3 x^{2}+6 x y+9 y^{2}$
(2) $g(x, y)=-2 x^{2}+x y-y^{2}$
(3) $g(x, y)=x^{2}-x y+2 y^{2}$
sol. All the critical points are (0,0). For (1), we have $g_{x}=6 x+6 y$, $g_{x x}=y, g_{y}=6 x+18 y, g_{y y}=18, g_{x y}=6$. Hence $D=6 \cdot 18-6^{2}=72>0$. Hence $(0,0)$ is a local min of g.

For (2), we have we have $g_{x}=-4 x+y, g_{x x}=-4, g_{y}=x-2 y, g_{y y}=$ $-2, g_{x y}=1$. Hence $D=(-2)(-4)-1=7>0$ and $g_{x x}=-4<0$, we see g has local maximum at $(0,0)$.

For (3), $g_{x}=2 x-y, g_{x x}=2, g_{y}=-x+4 y, g_{y y}=4, g_{x y}=-1 . \quad D=$ $2 \cdot 4+1=9>0$ and hence g has local minimum at $(0,0)$.

Example 14.6.9. The graph of $g=1 / x y$ is a surface S. Find the point on S closest to $(0,0)$.
sol. Each point on the surface is $(x, y, 1 / x y)$. Hence

$$
d^{2}=x^{2}+y^{2}+\frac{1}{x^{2} y^{2}}
$$

We find the point which minimize $f(x, y)=d^{2}(x, y)$ rather than d itself. Solving

$$
f_{x}=2 x-\frac{2}{x^{3} y^{2}}=0, \quad f_{y}=2 y-\frac{2}{x^{2} y^{3}}=0
$$

we obtain $x^{4} y^{2}=1$ and $x^{2} y^{4}=1$. From the first eq. we get $y^{2}=1 / x^{4}$. Substitute into second equation, we get $x^{6}=1$. So $x= \pm 1$ and $y= \pm 1$. Considering the geometry, one can easily see that all these four points give minimum $(d=\sqrt{3})$. (As x or y approaches $\infty, f \rightarrow \infty$). So f has no max.

Absolute(global) maxima and Minima

Definition 14.6.10. Suppose $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is real valued function. A point $\mathbf{x}_{0} \in D$ is a point of absolute maximum if $f\left(\mathbf{x}_{0}\right) \geq f(\mathbf{x})$ for all $\mathbf{x} \in D$. Similarly, it is a point of absolute minimum if $f\left(\mathbf{x}_{0}\right) \leq f(\mathbf{x})$ for all $\mathbf{x} \in D$.

Strategy of finding absolute(global) maxima and Minima

(1) Find all critical points
(2) Compute values at critical points
(3) Find max or min on the boundary ∂U (by parametrization)
(4) Compare all values obtained in (2) and (3).

Example 14.6.11. Find the maximum and the minimum of $f(x, y)=x^{2}+$ $y^{2}-x-y+1$ in $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$.
sol. First we compute the critical points of f. Since

$$
f_{x}=2 x-1=0, \quad f_{y}=2 y-1=0,
$$

the point $(1 / 2,1 / 2)$ is the only critical point. Since $f_{x x}=2, f_{x y}=0, f_{y y}=2$, $f_{x x} f_{y y}-f_{x y}^{2}=4>0, f_{x x}=2>0$, the point $(1 / 2,1 / 2)$ is gives a local minimum by second derivative test. Now check the boundary $D: x^{2}+y^{2}=1$. Use parametrization $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.

$$
g(t)=\cos ^{2} t+\sin ^{2} t-\cos t-\sin t+1=2-\cos t-\sin t .
$$

Set $g^{\prime}(t)=\sin t-\cos t=0$ to get $t=\pi / 4,5 \pi / 4$ are critical points. We have to check the end points $t=0,2 \pi$ also. Hence the values are

$$
\begin{gathered}
g(0)=1, \quad g(\pi / 4)=2-\sqrt{2} \\
g(5 \pi / 4)=2+\sqrt{2}, \quad g(2 \pi)=1 .
\end{gathered}
$$

Comparing, we see maximum is at $t=5 \pi / 4$, and min at $\pi / 4$ on the boundary. Finally compare with $f(1 / 2,1 / 2)=1 / 2$. The absolute maximum is $2+\sqrt{2}$ and absolute minimum is $1 / 2$.

14.7 Constrained Extrema and Lagrange multiplier

Theorem 14.7.1. Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are of \mathcal{C}^{1} class. And the restriction of f to the level set $S=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid g(\mathbf{x})=c\right\}$ (written as $\left.f\right|_{S}$)
has a (local) maximum or minimum at $\mathbf{x}_{0} \in S$ with $\nabla g\left(\mathbf{x}_{0}\right) \neq 0$. Then there is a scalar λ (Lagrange multiplier) such that

$$
\nabla f\left(\mathbf{x}_{0}\right)=\lambda \nabla g\left(\mathbf{x}_{0}\right)
$$

Example 14.7.2. Let

$$
\begin{aligned}
A(x, y, z) & =2(x y+y z)+z x \\
g(x, y, z) & =x y z-4
\end{aligned}
$$

By the Lagrange multiplier method, we have

$$
\nabla A=\lambda \nabla g \Rightarrow(2 y+z, 2 x+2 z, 2 y+x)=\lambda(y z, z x, x y)
$$

This gives three equations in four unknowns, x, y, z and λ. Appending the constraint equation, we have four by four system:

$$
\begin{aligned}
2 y+z & =\lambda y z \\
2 x+2 z & =\lambda z x \\
2 y+x & =\lambda x y \\
x y z & =4 .
\end{aligned}
$$

Since λ is not essential, we usually eliminate λ using any of the three equations.
Thus we get

$$
\lambda=\frac{2 y+z}{y z}=\frac{2 x+2 z}{z x}=\frac{2 y+x}{x y} .
$$

From these we get

$$
\frac{2}{z}+\frac{1}{y}=\frac{2}{z}+\frac{2}{x}=\frac{2}{x}+\frac{1}{y}
$$

Hence

$$
x=2 y, \quad z=2 y
$$

Substituting into last eq. $(2 y) y(2 y)=4$. Hence $y=1, x=z=2$.

Now a general minimization problem with a constraint is :

$$
\begin{array}{ll}
\text { Find the minimum of } & f(x, y, z) \\
\text { subject to } & g(x, y, z)=c .
\end{array}
$$

To solve it we solve system of equations with $n+1$ variables

$$
\begin{align*}
\nabla f(\mathbf{x}) & =\lambda \nabla g(\mathbf{x}) \tag{14.9}\\
g(\mathbf{x}) & =c \tag{14.10}
\end{align*}
$$

Example 14.7.3. Find max of $f(x, y)=x^{2}-y^{2}$ on $S: x^{2}+y^{2}=1$. (See figure) where the two level curves touch.
sol. Since $g(x, y)=x^{2}+y^{2}=1$ and $\nabla f=(2 x,-2 y), \nabla g=(2 x, 2 y)$, the equation becomes

$$
\begin{aligned}
f_{x}(x, y)=\lambda g_{x}(x, y) & \Longleftrightarrow 2 x=\lambda 2 x \\
f_{y}(x, y)=\lambda g_{y}(x, y) & \Longleftrightarrow-2 y=\lambda 2 y \\
g(x, y)=1 & \Longleftrightarrow x^{2}+y^{2}=1
\end{aligned}
$$

From the first equation we get $x=0$ or $\lambda=1$. If $x=0$, we see from third equation $y= \pm 1$. If $\lambda=1$ then $y=0$ and $x= \pm 1$. Now

$$
\begin{aligned}
& f(0,1)=f(0,-1)=-1 \\
& f(1,0)=f(-1,0)=1
\end{aligned}
$$

Hence the max is 1 and the \min is -1 .

Figure 14.5: Level sets of g meets with the level set of f.

Example 14.7.4. Find max of $f(x, y, z)=x+z$ subject to $x^{2}+y^{2}+z^{2}=1$.
sol. Let $g(x, y, z)=x^{2}+y^{2}+z^{2}$. By the Lagrange multiplier method, we
have $\nabla f=\lambda \nabla g$. Thus,

$$
\begin{aligned}
& 1=2 x \lambda, \\
& 0=2 y \lambda, \\
& 1=2 z \lambda, \\
& 1=x^{2}+y^{2}+z^{2} .
\end{aligned}
$$

From the first and third equation we see that $\lambda \neq 0$ and $x=z$. Hence from the second equation $y=0$. Eliminating $\lambda=\frac{1}{2 x}=\frac{1}{2 z}$, we get $x=z$. From fourth equation we obtain $x=z= \pm 1 / \sqrt{2}$. Hence $(1 / \sqrt{2}, 0,1 / \sqrt{2})$ and $(-1 / \sqrt{2}, 0,-1 / \sqrt{2})$.

Example 14.7.5. Find extreme points of $f=x+y+z$ subject to $x^{2}+y^{2}=2$ and $x+z=1$.
sol. Constraints are $g_{1}=x^{2}+y^{2}-2=0$ and $g_{2}=x+z-1=0$. Thus

$$
\nabla f=\lambda_{1} \nabla g_{1}+\lambda_{2} \nabla g_{2}
$$

Since

$$
\begin{aligned}
& g_{1}=x^{2}+y^{2}-2 \\
& g_{2}=x+z-1,
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& 1=\lambda_{1} \cdot 2 x+\lambda_{2} \cdot 1 \\
& 1=\lambda_{1} \cdot 2 y+\lambda_{2} \cdot 0 \\
& 1=\lambda_{1} \cdot 0+\lambda_{2} \cdot 1 \\
& 0=x^{2}+y^{2}-2 \\
& 0=x+z-1 .
\end{aligned}
$$

From third equation we obtain $\lambda_{2}=1$ and so $\lambda_{1} \cdot 2 x=0$ and $\lambda_{1} \cdot 2 y=1$. From second, we see $\lambda_{1} \neq 0$, hence $x=0$. Thus $y= \pm \sqrt{2}$ and $z=1$. Hence possible extrema are $(0, \pm \sqrt{2}, 1)$. We can easily check the point $(0, \sqrt{2}, 1)$ gives the maximum value $\sqrt{2}+1$, and the point $(0,-\sqrt{2}, 1)$ gives minimum $-\sqrt{2}+1$.

14.8 Taylor theorem for two or more variables

14.8.1 Taylor theorem for 2 variables - second order formula

Define a new function $F(t)=f(\mathbf{a}+t \mathbf{h})$. According to Taylor's theorem in one variable, we have for some c,

$$
F(t)=F(0)+F^{\prime}(0) t+\frac{1}{2!} F^{\prime \prime}(c) t^{2}
$$

By chain rule we see that

$$
F^{\prime}(t)=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}=h f_{x}+k f_{y}=\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right) f(\mathbf{a}+t \mathbf{h})
$$

Repeating this process, we see
$F^{\prime \prime}(t)=\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{2} f(\mathbf{a}+t \mathbf{h}), \cdots, F^{(m)}(t)=\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{m} f(\mathbf{a}+t \mathbf{h})$.
Expanding in $F(t)$, we see

$$
\begin{aligned}
F(t) & =F(0)+f_{x}(\mathbf{a}) \frac{d x}{d t}+f_{y}(\mathbf{a}) \frac{d y}{d t}+\left.\frac{1}{2}\left(h^{2} f_{x x}+2 h k f_{x y}+k^{2} f_{y y}\right)\right|_{\mathbf{c}} \\
& =f(\mathbf{a})+h f_{x}(\mathbf{a})+k f_{y}(\mathbf{a})+\left.\frac{1}{2}\left(h^{2} f_{x x}+2 h k f_{x y}+k^{2} f_{y y}\right)\right|_{\mathbf{c}}
\end{aligned}
$$

Theorem 14.8.1. (1) The remainder is given by $R_{1}(\mathbf{x}, \mathbf{a})=\sum_{i, j=1}^{n} \frac{1}{2!} f_{x_{i}, x_{j}}(\mathbf{c}) h_{i} h_{j}$ and $R_{2}(\mathbf{x}, \mathbf{a})=\sum_{i, j, k=1}^{n} \frac{1}{3!} f_{x_{i}, x_{j}, x_{k}}(\mathbf{c}) h_{i} h_{j} h_{k}$.

Derivation of second derivative test

(with $h=x-a, k=y-b$) For small value c, it suffices to check(by continuity) the sign of

$$
Q(0)=h^{2} f_{x x}(a, b)+2 h k f_{x y}(a, b)+k^{2} f_{y y}(a, b) .
$$

(1) f has a local max. if $f_{x x}(a, b)<0$ and $f_{x x} f_{y y}-f_{x y}^{2}>0$
(2) f has a local min. if $f_{x x}(a, b)>0$ and $f_{x x} f_{y y}-f_{x y}^{2}>0$
(3) f has a saddle point if $f_{x x} f_{y y}-f_{x y}^{2}<0$.

Example 14.8.2. Find 2nd order Taylor approximation of $f(x, y)=e^{x+y}$ near $\mathbf{a}=(0,0)$.
sol.

$$
\begin{gathered}
f_{x}(0,0)=f_{y}(0,0)=e^{0}=1 \\
f_{x x}(0,0)=f_{x y}(0,0)=f_{y y}(0,0)=e^{0}=1 \\
f(x, y)=1+x+y+\frac{1}{2!}\left(x^{2}+2 x y+y^{2}\right)+R_{2}
\end{gathered}
$$

As $(x, y) \rightarrow(0,0), R_{2} /\|(x, y)\|^{2} \rightarrow 0$.

Error formula for Taylor expansion

$$
f(x, y)=f(a, b)+h f_{x}(a, b)+k f_{y}(a, b)+\frac{1}{2}\left(h^{2} f_{x x}+2 h k f_{x y}+k^{2} f_{y y}\right)_{\mathbf{c}}
$$

Hence the error of linear approximation can be estimated as

$$
\begin{gathered}
\left|R_{1}\right| \leq\left|E_{1}\right|=\frac{M}{2}(h+k)^{2}, M=\max \left\{\left|f_{x x}\right|,\left|f_{x y}\right|,\left|f_{y y}\right|\right\} \\
\left|R_{2}\right| \leq\left|E_{2}\right|=\frac{M}{6}(h+k)^{3}, M=\max \left\{\left|f_{x x x}\right|,\left|f_{x x y}\right|,\left|f_{x y y}\right|,\left|f_{y y y}\right|\right\}
\end{gathered}
$$

14.9 Partial derivatives with constrained variables

Example 14.9.1. Find $\frac{\partial w}{\partial x}$ at $(2,-1,1)$ when $w=x^{2}+y^{2}+z^{2}$ and $z^{3}-x y+$ $y z+y^{3}=1$ assuming x, y are independent variables.

Chapter 15

Double integral

15.1 Double integral over a rectangle

Assume $R=\{(x, y): a \leq x \leq b, c \leq y \leq d\}$ is subdivided into

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b, \quad c=y_{0}<y_{1}<\cdots<y_{n}=d .
$$

We call the $\left\{R_{i j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]\right\}$ a partition of R and let

$$
\Delta x_{i}=x_{i}-x_{i-1}, \quad \Delta y_{j}=y_{j}-y_{j-1} .
$$

Definition 15.1.1. Given any function f defined on R, and for any point $c_{i j}$ in $R_{i j}$ consider the Riemann sum

$$
\begin{equation*}
S=\mathcal{R}(f)=\sum_{i, j=1}^{n} f\left(c_{i j}\right) \Delta x_{i} \Delta y_{j}, \tag{15.1}
\end{equation*}
$$

Figure 15.1: A partition of a rectangle

Definition 15.1.2 (Double integral). If the sum S converge to the same limit, then f is called integrable over R and we write its limit by

$$
\iint_{R} f(x, y) d A=\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{i, j=1}^{n} f\left(c_{i j}\right) \Delta x_{i} \Delta y_{j}
$$

Reduction to iterated integrals

Consider the volume of a solid under f over $R=[a, b] \times[c, d]$. The cross section along $x=x_{0}$ is the set given by $\left\{\left(x_{0}, y, z\right) \mid 0 \leq z \leq f\left(x_{0}, y\right),(c \leq y \leq d)\right\}$. The area of cross section is

$$
A\left(x_{0}\right)=\int_{c}^{d} f\left(x_{0}, y\right) d y
$$

Hence by Cavalieri principle, the volume is

$$
\int_{a}^{b} A(x) d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x
$$

The expression on the right hand side is called an iterated integral. We change the role of x and y to see

$$
\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
$$

Figure 15.2: Fubini's theorem by Cavalieri Principle

Example 15.1.3. Evaluate

$$
\iint_{S} \cos x \sin y d x d y, \quad S=\left[0, \frac{\pi}{2}\right] \times\left[0, \frac{\pi}{2}\right]
$$

sol.

$$
\begin{aligned}
\iint_{S} \cos x \sin y d x d y & =\int_{0}^{\pi / 2}\left[\int_{0}^{\pi / 2} \cos x \sin y d x\right] d y \\
& =\int_{0}^{\pi / 2} \sin y\left[\int_{0}^{\pi / 2} \cos x d x\right] d y=\int_{0}^{\pi / 2} \sin y d y=1
\end{aligned}
$$

Theorem 15.1.4 (Fubini Theorem 1). Let f be continuous on $R=[a, b] \times$ $[c, d]$. Then f satisfies

$$
\begin{equation*}
\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y=\iint_{R} f(x, y) d A \tag{15.2}
\end{equation*}
$$

Example 15.1.5. Find the volume of the region $0 \leq x \leq 1,0 \leq y \leq 1$, $0 \leq z \leq 2-x-y$.
sol. First fix x. Then the area of cross section with a plane perpendicular to x-axis is

$$
A(x)=\int_{0}^{1}(2-x-y) d y
$$

So the volume is

$$
\begin{aligned}
V & =\int_{0}^{1} A(x) d x=\int_{x=0}^{x=1} \int_{y=0}^{y=1}(2-x-y) d y d x \\
& =\int_{0}^{1}\left[2 y-x y-\frac{y^{2}}{2}\right]_{0}^{1} d x \\
& =\int_{0}^{1}\left(\frac{3}{2}-x\right) d x=\left[\frac{3 x}{2}-\frac{x^{2}}{2}\right]_{0}^{1}=1
\end{aligned}
$$

Example 15.1.6. Compute $\iint_{R}\left(x^{2}+y\right) d A$, where $A=[0,1] \times[0,1]$.
sol.
$\iint_{R}\left(x^{2}+y\right) d A=\int_{0}^{1} \int_{0}^{1}\left(x^{2}+y\right) d x d y=\int_{0}^{1}\left[\int_{0}^{1}\left(x^{2}+y\right) d x\right] d y=\int_{0}^{1}\left(\frac{1}{3}+y\right) d y=\frac{5}{6}$.

15.2 Double integral over general regions

Now we define the integral of more general functions.

Figure 15.3: Partitioning of nonrectangular region

We only count the sub-rectangles contained in the region:

$$
\begin{equation*}
S=\mathcal{R}(f)=\sum f\left(c_{i j}\right) \Delta A_{i j} . \tag{15.3}
\end{equation*}
$$

If this limit exists as $\|\mathcal{P}\| \rightarrow 0$ we define it as a double integral.
Definition 15.2.1. Elementary regions

(a) region of type 1

(b) region of type 2

Figure 15.4: region of type 1 , region of type 2

There are three kind of elementary regions: Let $y=\phi_{1}(x), y=\phi_{2}(x)$ be two continuous functions satisfying $\phi_{1}(x) \leq \phi_{2}(x)$ for $x \in[a, b]$. Then the region

$$
D=\left\{(x, y) \mid a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)\right\}
$$

is called region of type 1.
Now change the role of x, y as in figure $15.4(\mathrm{~b})$. If $x=\psi_{1}(y), x=\psi_{2}(y)$, satisfies $\psi_{1}(y) \leq \psi_{2}(y)$ for $y \in[c, d]$, then the region determined by

$$
D=\left\{(x, y) \mid c \leq y \leq d, \psi_{1}(y) \leq x \leq \psi_{2}(y)\right\}
$$

is called region of type 2. The region that is both Type 1 and Type 2 is called region of type 3 . These are called elementary regions.

Figure 15.5: Region of type 3

Integrals over elementary regions

Theorem 15.2.2 (Fubini's Theorem (Stronger form)). Let f be a continuous on an elementary region $D \subset R$.
(1) If D is a domain of type 1, i.e, $D=\left\{(x, y): \phi_{1}(x) \leq y \leq \phi_{2}(x)\right.$, $a \leq$ $x \leq b\}$ for some continuous functions ϕ_{1}, ϕ_{2}, then f is integrable on D and

$$
\iint_{D} f(x, y) d A=\int_{a}^{b}\left[\int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y\right] d x
$$

(2) Similarly if D is a domain of type 2, i.e, $D=\left\{(x, y): \psi_{1}(y) \leq x \leq\right.$
$\left.\psi_{2}(y), c \leq y \leq d\right\}$ for some continuous functions ψ_{1}, ψ_{2}, then

$$
\iint_{D} f(x, y) d A=\int_{c}^{d}\left[\int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) d x\right] d y .
$$

Example 15.2.3. Find the following integral when $D: 0 \leq x \leq 1, x \leq y \leq 1$

$$
\iint_{D}\left(x+y^{2}\right) d x d y
$$

Figure 15.6: Region $0 \leq x \leq 1, x \leq y \leq 1$
sol. Use Fubini's theorem

$$
\begin{aligned}
\int_{0}^{1} \int_{x}^{1}\left(x+y^{2}\right) d y d x & =\int_{0}^{1}\left[x y+\frac{y^{3}}{3}\right]_{x}^{1} d x \\
& =\int_{0}^{1}\left(x+\frac{1}{3}-x^{2}-\frac{x^{3}}{3}\right) d x \\
& =\left[\frac{x^{2}}{2}+\frac{x}{3}-\frac{x^{3}}{3}-\frac{x^{4}}{12}\right]_{0}^{1}=\frac{5}{12} .
\end{aligned}
$$

Example 15.2.4. Find $\iint_{D} x^{2} y d A$ where D is given by $0 \leq x, 3 x^{2} \leq y \leq$ $4-x^{2}$. (Figure 15.7)
sol. Two curves $y=3 x^{2}$ and $y=4-x^{2}$ meet at the point (1,3). Hence the integral becomes

$$
\begin{aligned}
\int_{0}^{1} \int_{3 x^{2}}^{4-x^{2}} x^{2} y d y d x & =\left.\int_{0}^{1}\left(\frac{x^{2} y^{2}}{2}\right)\right|_{y=3 x^{2}} ^{4-x^{2}} d x \\
& =\int_{0}^{1}\left(\frac{x^{2}}{2}\left(\left(4-x^{2}\right)^{2}-\left(3 x^{2}\right)^{2}\right)\right) d x \\
& =\frac{1}{2} \int_{0}^{1} x^{2}\left(16-8 x^{2}+x^{4}-9 x^{4}\right) d x=\frac{136}{105}
\end{aligned}
$$

Figure 15.7: Domain of integration of example 15.2.4 and 15.2.6

Example 15.2.5. Find volume of tetrahedron bounded by the planes $y=$ $0, x=0, y-x+z=1$.
sol. We let $z=f(x, y)=1-y+x$. Then the volume of tetrahedra is the volume under the graph of f. Hence

$$
\begin{aligned}
\iint_{D}(1-y+x) d A & =\int_{-1}^{0} \int_{0}^{1+x}(1-y+x) d y d x \\
& =\int_{-1}^{0}\left[(1+x) y-\frac{y^{2}}{2}\right]_{y=0}^{1+x} d x=\frac{1}{6}
\end{aligned}
$$

Example 15.2.6. Let D be given by $D=\{(x, y) \mid 0 \leq x \leq \ln 2, \quad 0 \leq y \leq$ $\left.e^{x}-1\right\}$. Express the double integral

$$
\iint_{D} f(x, y) d A
$$

in two iterated integrals.
sol. See figure 15.7. To view it as a region of type 1 , the points of intersection is $y=0, y=e^{x}-1(0 \leq x \leq \ln 2)$. Hence

$$
\int_{0}^{\ln 2} \int_{0}^{e^{x}-1} f(x, y) d y d x
$$

As a y-simple region, the points of intersection is $x=\ln (y+1), x=$
$\ln 2(0 \leq y \leq 1)$. So the integral is

$$
\int_{0}^{1} \int_{\ln (y+1)}^{\ln 2} f(x, y) d x d y
$$

15.3 Change order of integration

Suppose D is of type 3 . Then it is given by two ways:

$$
\phi_{1}(x) \leq y \leq \phi_{2}(x), a \leq x \leq b
$$

and

$$
\psi_{1}(y) \leq x \leq \psi_{2}(y), c \leq y \leq d
$$

Thus by Theorem 15.2.2

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x=\int_{c}^{d} \int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) d x d y
$$

Example 15.3.1. Compute by change of order of integration

$$
\int_{0}^{a} \int_{0}^{\left(a^{2}-x^{2}\right)^{1 / 2}}\left(a^{2}-y^{2}\right)^{1 / 2} d y d x
$$

sol.

$$
\begin{aligned}
\int_{0}^{a} \int_{0}^{\left(a^{2}-x^{2}\right)^{1 / 2}}\left(a^{2}-y^{2}\right)^{1 / 2} d y d x & =\int_{0}^{a} \int_{0}^{\left(a^{2}-y^{2}\right)^{1 / 2}}\left(a^{2}-y^{2}\right)^{1 / 2} d x d y \\
& =\int_{0}^{a}\left[x\left(a^{2}-y^{2}\right)^{1 / 2}\right]_{0}^{\left(a^{2}-y^{2}\right)^{1 / 2}}\left(a^{2}-y^{2}\right)^{1 / 2} d y \\
& =\int_{0}^{a}\left(a^{2}-y^{2}\right) d y=\frac{2 a^{3}}{3}
\end{aligned}
$$

Example 15.3.2. Find

$$
\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} d y d x
$$

Figure 15.8: Change order of integration
sol. We change the order of integration

$$
\begin{aligned}
\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} d y d x & =\int_{0}^{\pi} \int_{0}^{y} \frac{\sin y}{y} d x d y \\
& =\int_{0}^{\pi}\left[\frac{\sin y}{y} x\right]_{x=0}^{x=y} d y \\
& =\int_{0}^{\pi} \sin y d y=[-\cos y]_{0}^{\pi}=2
\end{aligned}
$$

Example 15.3.3. Find

$$
\int_{0}^{2} \int_{y^{2}}^{4} y \cos \left(x^{2}\right) d x d y
$$

sol. It is very difficult to find $\int_{y^{2}}^{4} \cos \left(x^{2}\right) d x$. However, if we change the order of integration to have (Figure 15.8)

$$
\begin{aligned}
\int_{0}^{2} \int_{y^{2}}^{4} \cos \left(x^{2}\right) d x d y & =\int_{0}^{4} \int_{0}^{\sqrt{x}} y \cos \left(x^{2}\right) d y d x \\
& =\left.\int_{0}^{4} \frac{y^{2}}{2} \cos \left(x^{2}\right)\right|_{0} ^{\sqrt{x}} d x \\
& =\int_{0}^{4} \frac{x}{2} \cos \left(x^{2}\right) d x \\
& =\frac{1}{4} \int_{0}^{16} \cos u d u=\frac{1}{4} \sin 16
\end{aligned}
$$

